SFA Workshop on Regional Perspectives

Space Presentation

Lt Col Ryan Snider
Small Satellites (SmallSats)

• SpaceX Big Rocket
 – When built, among the largest rockets ever constructed
 – 100 ton payloads cheaply to Low Earth Orbit (LEO)
 – 1,000 MicroSats placed into proliferated LEO on single launch
 – Self-building ‘LEGO’ kits that can build larger and more complex space satellites and stations than we know today

• One kilogram of stuff into space
 – 2004, 40K($US)/kg; 2018, $2.5K/kg; 2020 $47/kg
 – Can reusable rockets and 3-dimensional printing in space drive costs even lower?

• Decreasing costs catapults mom and pop space rangers into space realm and exponentially advances technology much like the internet did for computing
Proliferated LEO Constellations

• Trend toward constellations of many more smaller satellites in Low Earth Orbit (LEO)

• Motivations:
 – 100% global coverage, lower cost to build & launch, shorter life with faster technology refresh rate, higher constellation mission resilience if an individual satellite(s) were lost

• Current focus is global satellite communications (SATCOM)

• Planning and design of architectures for other mission areas ongoing:
 – Private and Military SATCOM
 – Broadband - Internet for All
 – Position, Navigation and Timing (PNT)
 – Missile Warning
 – Earth Imaging
Who’s Who in Proliferated LEO

LEO & MEO Broadband Constellations
At least 15 companies have declared their intent to develop broadband satellite constellations in low Earth orbit (LEO) or medium Earth orbit (MEO), according to Northern Sky Research. Most of these companies intend to have their first-generation systems deployed within five years. O3b, which is nearing completion of a 20-satellite constellation begun in 2013, will add seven mPower second-generation broadband satellites starting in 2021.

PROGRESS KEY
- Constellation builder selected
- Launcher(s) identified
- Prototype satellite(s) launched
- Operational satellite(s) in orbit

Source: Northern Sky Research

- Laser Light
 - # Satellites: 12
 - Altitude (km): 10,000

- LeoSat
 - # Satellites: 108
 - Altitude (km): 1,452

- SpaceX Starlink
 - # Satellites: 4,425
 - Altitude (km): 1,100-1,325

- Hongyan
 - # Satellites: 500
 - Altitude (km): 1,100

- Lucky Star
 - # Satellites: 156
 - Altitude (km): 1,000

- Yaliny
 - # Satellites: 135
 - Altitude (km): 600

- O3b
 - # Satellites: 27
 - Altitude (km): 8,400

- Viasat
 - # Satellites: 24
 - Altitude (km): 8,200

- Astrome Technologies
 - # Satellites: 600
 - Altitude (km): 1,400

- OneWeb
 - # Satellites: 900
 - Altitude (km): 1,200

- Xinwei
 - # Satellites: 32
 - Altitude (km): N/A

- Telesat LEO
 - # Satellites: 117
 - Altitude (km): 1,000

- Boeing V-band
 - # Satellites: 2,956
 - Altitude (km): 1,030-1,000

- Commsat
 - # Satellites: 800
 - Altitude (km): 600
SATCOM Internet

• Uncensored access to the internet
 – Governments attempting to block access may cause unintended denial to other space-based services
 – How would attempting to jam private satellite communications (SATCOM) internet providers be interpreted by the global community?

• Remote locations
 – Isolated communities can become part of the global collective awareness
 – Economic advances in rural areas
 – Retard population migration to mega cities
Space Travel

- **REMINDER**: Only several decades separated manned flight from manned orbit
 - Rapidly developing rocket engine technology will cause the cost of access to space to plummet
- Virgin Galactic is poised to take paying customers on up and back space adventures
- Blue Origin’s ‘New Shepard’ re-usable launch vehicle can feasibly usher in the age of a space hop
 - Modify the capsule to enable the launch vehicle for transport of humans from GBR to AUS in 2 hours or so
- SpaceX has plans for circumlunar space travel
Orbits Above GEO (Cislunar)
Cislunar Orbits

• Considerable interest in exploring beyond geostationary orbits (GEO)... but why?
 – Return to the Moon
 – Solar Observation
 – Access to non-Earthbound resources to enable further space travel
 – Asteroid mining

• How will regular and prolonged human presence on the Moon and its orbital region influence human activities on Earth?

• Will international competition for resources and military advantage extend here?
Asteroid Landing

- Japan Aerospace Exploration Agency (JAXA), German Aerospace Center (DLR), French space agency (CNES)
- Landed Oct 2018
Collection & Recycling

• Asteroid mining for rare earth materials
• By comparison, moon mining is technically simpler
• Space debris pickup
 – Materials can be recycled on Earth for monetary gain
• Opportunities for scientific community and private entities to profit
GPS Reliancy

• Global Positioning System (GPS) is easily jammed or spoofed
• Operating in a GPS-denied environment is highly likely to be a future reality for the Alliance
• The general public is addicted
 – Tell me again how I get to Grandma’s house?
• Position Navigation and Timing (PNT)
 – Essential to banking industry and identifying when transactions take place
 – Necessary as well for our state of the art energy systems
• Possible to use commercial transmissions (WiFi, mobile phone towers, etc.) to geo-locate in the absence of Satellite Navigation (SatNav) data
Imagery Intelligence

• Commercial optical images already exist but they’re regulated by space agreements
 – What will happen when unregulated commercial entities and non-state actors enter the scene?

• Observing from space in other wavelengths is more difficult yet doable
 – A decade ago synthetic aperture radar images required supercomputers to process imagery. Now the same computing power is carried in most people’s pockets
Militarization of Space

• “Space Force”
 – Does it provoke increasing military activity in space from other actors?

• Usage of anti-satellites
 – Kinetic, ground-based methods are frowned upon due to large amounts of debris caused
 – Non-destructive options however...
 • Sails, nets, propulsion modules, passive and active tethers
 – Can even deorbit assets to collide with a target